Code: 23ES1203

I B.Tech - II Semester – Regular / Supplementary Examinations MAY 2025

ENGINEERING GRAPHICS

(Common for EEE, ECE)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

		BL	СО	Max.		
				Marks		
UNIT-I						
1	The Distance between Delhi and Agra is 200 km	L3	CO1	14 M		
	and its equivalent distance on map measures					
	10 cm. Construct a diagonal scale to indicate					
	223 km and 135 km.					
OR						
2	A fixed point F is 8 cm from a fixed straight	L3	CO1	14 M		
	line. Draw the locus of a point P moving in such					
	a way that its distance from the fixed straight					
	line is equal to its distance from F. Name the					
	curve and draw normal and tangent at a point					
	6 cm from F.					
			l			

UNIT-II						
3	Mark the projections of the following points on	L3	CO2	14 M		
	a common reference line keeping the projectors					
	25 mm a part					
	A 20 mm above HP and 30 mm in front of V.P					
	B 25 mm above HP and 40 mm behind VP					
	C 30 mm below HP and 45 mm behind VP					
	D 30 mm below HP and 40 mm in front of VP					
	E 25 mm above HP and in the VP					
	F 35 mm below HP and in VP					
	G 25 mm in front of VP and in HP					
	OR					
4	The distance between the projectors of two	L3	CO2	14 M		
	points A and B is 60 mm. Point A is 10 mm					
	above HP and 15 mm in front of VP. Point B is					
	50 mm above HP and 40 mm in front of VP.					
	Find the shortest distance between A and B.					
	Measure the true inclinations of the Line AB					
	with HP and VP.					
	UNIT-III	Г	,			
5	A Hexagonal plane of 20 mm side rests on one	L3	CO2	14 M		
	of its corners on the HP. The diagonal passing					
	through this corner is inclined at 45° to the HP.					
	The plate then rotated through 90° such that the					
	top view of this diagonal is perpendicular to the					
	VP and surface is still inclined to HP.					

	OR			
6	A pentagonal pyramid side of base 30 mm and	L3	CO2	14 M
	axis 60 mm long rests with one of its corner on			
	HP such that the base is inclined at an angle of			
	60° to HP and one side of base is perpendicular			
	to VP. Draw its projections.			
	UNIT-IV			
7	A square prism side of base 25 mm and axis 50	L3	CO2	14 M
	mm long rests with its base on HP and one of its			
	rectangular faces is inclined at 30° to VP. A			
	section plane perpendicular to VP and inclined			
	at 60^{0} to HP cuts the axis of the prism at a			
	20 mm from its top end.			
OR				
8	Draw the development of the lateral surface of	L3	CO3	14 M
	the part P of the pyramid, the front view of			
	which is shown in Fig. A hexagonal pyramid,			
	two sides of the base parallel to the V.P.			
	P			

	UNIT-V					
		1.0	004	1 4 3 4		
9	Draw the following views of the object shown	L3	CO4	14 M		
	pictorially in Fig.					
	i) Front view ii) Top view					
	iii) Side view from the right.					
	OR					
10	Draw the following views of the block shown	L3	CO4	14 M		
	pictorially in Fig.					
	i) Front view ii) Top view					
	iii) Side view from the right.					
	R15 9 33 52 X					